Temporal Knowledge Extraction for Dataset Discovery
نویسندگان
چکیده
Linked data datasets are usually created with different data and metadata quality. This makes the exploration of these datasets a quite difficult task for the users. In this paper, we focus on improving discoverability of datasets based on their temporal characteristics. For this purpose, we identify the typology of temporal knowledge that can be observed inside data. We reuse existing temporal information extraction techniques available, and employ them to create temporal search indices. We present a particular use-case of dataset discovery based on more detailed and completed temporal descriptions for each dataset in the Czech LOD cloud based on the analyzing of the unstructured content in the literals as well as the structured properties, taking into consideration varying data and metadata quality.
منابع مشابه
Data Mining in Sequential Pattern for Asynchronous Periodic Patterns
Data mining is becoming an increasingly important tool to transform enormous data into useful information. Mining periodic patterns in temporal dataset plays an important role in data mining and knowledge discovery tasks. This paper presents, design and development of software for sequential pattern mining for asynchronous periodic patterns in temporal database. Comparative study of various alg...
متن کاملA Rough Set Approach to Spatio-temporal Outlier Detection
Detecting outliers which are grossly different from or inconsistent with the remaining spatio-temporal dataset is a major challenge in real-world knowledge discovery and data mining applications. In this paper, we deal with the outlier detection problem in spatio-temporal data and we describe a rough set approach that finds the top outliers in an unlabeled spatio-temporal dataset. The proposed ...
متن کاملMINING FUZZY TEMPORAL ITEMSETS WITHIN VARIOUS TIME INTERVALS IN QUANTITATIVE DATASETS
This research aims at proposing a new method for discovering frequent temporal itemsets in continuous subsets of a dataset with quantitative transactions. It is important to note that although these temporal itemsets may have relatively high textit{support} or occurrence within particular time intervals, they do not necessarily get similar textit{support} across the whole dataset, which makes i...
متن کاملTemporal Databases and Frequent Pattern Mining Techniques
Data mining is the process of exploring and analyzing data from different perspective, using automatic or semiautomatic techniques to extract knowledge or useful information and discover correlations or meaningful patterns and rules from large databases. One of the most vital characteristic missed by the traditional data mining systems is their capability to record and process time-varying aspe...
متن کاملPresenting a method for extracting structured domain-dependent information from Farsi Web pages
Extracting structured information about entities from web texts is an important task in web mining, natural language processing, and information extraction. Information extraction is useful in many applications including search engines, question-answering systems, recommender systems, machine translation, etc. An information extraction system aims to identify the entities from the text and extr...
متن کامل